预聘副教授,特别研究员,博士生导师
zhurui_bit@163.com
分布式阵列高精度时频同步,以及微波集成电路、高效率射频功率放大器、宽带非互异性器件、大规模低成本相控阵列等。
一、个人简介:
朱睿,博士,预聘副教授,特别研究员,博士生导师。1989年1月16日出生。
于2011年7月本科毕业于清华大学电子工程系,2017年12月于美国加州大学洛杉矶分校电子工程系获博士学位,导师为IEEE Fellow Yuanxun Wang教授。2017年10月至2020年10月在在美国Axend创业公司担任总工程师,主持5G毫米波射频前端芯片、MIMO通信系统、低成本卫星通信相控阵列等技术和产品研发,参与生物检测雷达、低小慢目标探测雷达研发,相关技术曾获千万级融资。2020年12月通过人才交流计划引进项目加入北京理工大学信息与电子学院,获批北京市科技新星,入选国家级青年人才项目。
目前主要研究方向为分布式阵列高精度时频同步,以及微波集成电路、高效率射频功率放大器、宽带非互异性器件、大规模低成本相控阵列等。
作为负责人主持国家自然基金青年项目、北京市科技新星等多个项目、某K委TQ项目、基础加强重点项目课题等。作为骨干参与“中国复眼”大规模分布孔径深空探测雷达项目研究。截止目前已在IEEE TMTT, TAP, MWCL等期刊及领域内顶级会议发表论文29篇,授权国内发明专利5项。担任IET Radar Conference TPC Member,分会Session Chair。担任IEEE TCAS I,TMTT, Optica,Optics Letter等期刊审稿人。
二、教育背景
2017.12,获博士学位,University of California, Los Angeles
2013.06,获工学硕士学位,University of California, Los Angeles
2007.07,获工学学士学位,清华大学电子工程系
三、职业经历
2024.10 – 至今, 预聘副教授,特别研究员,北京理工大学
2023.02 – 2024.10,预聘助理教授,北京理工大学
2020.12 – 2023.02,博士后,北京理工大学
2017.10 – 2020.11,总工程师,Axend,Inc
四、研究概况:
主要研究领域为面向新一代无线通信、雷达的微波集成电路与系统研究。开展了脉冲包络调制算法与射频开关功率放大器研究,可解决射频功率放大器中效率与信号线性度的本征矛盾,相关研究结果在IEEE IMS 2017 workshop上进行了报告,受到多位著名学者认可。创业期间,主要负责并领导射频集成电路与系统的开发,开展了低成本相控阵列技术研发,完成了基于双波混频架构的无移相器波束电控扫描方案,可显著降低相控阵列成本;利用双波混叠原理实现频控阵列,解决了目标距离信息与角度信息耦合的问题,为提供新一代低成本大规模相控阵列提供新的解决方案。
现主要研究方向为分布式阵列时频同步及相关应用的研究。提出了面向5G的毫米波通信分布式中继系统,采用频率转换MIMO模式实现户外毫米波与室内微波MIMO信道的容量匹配,该项成果受邀在2018年IEEE IMS的5G峰会上做技术演示,同样获得同行肯定,并被环球时报海外版报道。
五、讲授课程
C语言程序设计,本科生专业基础课,北京理工大学
学术出版物、论文等)
[1] R. Zhu, Q. Xu, G. Liu, Q. Duan, Y. Li, and Y. Wang, "A low-cost electronic scanning antenna with two-wave mixing," in IMS 2017, 2019: IEEE, pp. 758-761.
[2] R. Zhu, M. Xu, Q. Liu, B. Wang, and W. Zhang, "Photonic generation of flexible ultra-wide linearly-chirped microwave waveforms," Optics Express, vol. 29, no. 26, pp. 43731-43744, 2021.
[3] R. Zhu, Y. E. Wang, Q. Xu, Y. Liu, and Y. D. Li, "Millimeter-wave to microwave MIMO relays (M4R) for 5G building penetration communications," in RWS 2018, 2018: IEEE, pp. 206-208.
[4] R. Zhu and Y. E. Wang, "Tunable RF bandpass filter for interference suppression in software defined radios," 2017: IEEE, pp. 2049-2051.
[5] R. Zhu and Y. E. Wang, "A modified QPSK modulation technique for direct antenna modulation (DAM) systems," APSURSI 2013, 2014: IEEE, pp. 1592-1593.
[6] R. Zhu, Y. Song, Y. E. Wang, and Y. Li, "A S-band bitstream transmitter with Channelized Active Noise Elimination (CANE)," in RWS 2015, 2015: IEEE, pp. 1-3.
[7] R. Zhu, Y. Song, and Y. E. Wang, "Channelized active noise elimination (CANE) for suppressing quantization noise in bitstream modulated transmitter (BMT)," EURASIP Journal on Wireless Communications and Networking, vol. 2021, no. 1, p. 187, 2021.
[8] R. Zhu, Y. Song, and Y. E. Wang, "Suppressing transmitter intermodulations with channelized active noise elimination (CANE)," in IMS 2015, 2015: IEEE, pp. 1-4.
[9] R. Zhu, Y. Song, and Y. E. Wang, "Channelized active noise elimination (CANE) with envelope delta sigma modulation," in IMS 2015, 2015: IEEE, pp. 55-57.
[10] R. Zhu, S. P. Selvin, Y. Wang, and N. Guo, "Frequency shift keying for direct antenna modulation (DAM) with electrically small antenna," in APSURSI 2017, 2017: IEEE, pp. 1203-1204.
[11] R. Zhu, Y. Liu, B. Wang, W. Zhang, Q. Xu, and Q. Liu, "Frequency-controlled fixed-RF Beam-steering array based on two-wave mixing with cascaded unequal power divider," IEEE Trans. Antennas Propag., vol. 71, no. 2, pp. 1993-1998, 2022.
[12] R. Zhu, "Digitally Enhanced Switched-Mode RF Transmitters for Efficiency, Bandwidth and Fidelity," 2017.
[13] F. Yang, J. Guo, R. Zhu, J. Le Kernec, Q. Liu, and T. Zeng, "Ground clutter mitigation for slow-time MIMO radar using independent component analysis," Remote Sensing, vol. 14, no. 23, p. 6098, 2022.
[14] Q. Wu, X. Zou, R. Zhu, and Y. E. Wang, "Chip-scale RF correlator with monolithically integrated time-varying transmission line (TVTL)," in IMS 2018, 2018: IEEE, pp. 431-434.
[15] Y. Wang, C. Liu, R. Zhu, M. Liu, Z. Ding, and T. Zeng, "MAda-Net: Model-adaptive deep learning imaging for SAR tomography," IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1-13, 2023.
[16] Y. Song, R. Zhu, and Y. E. Wang, "Active Noise Filtering for $ X $-Band GaN Transmitters With Bitstream Modulations," IEEE Trans. Microw. Theory Techn., vol. 65, no. 4, pp. 1372-1380, 2017.
[17] Y. Song, R. Zhu, and Y. E. Wang, "An $ X $-Band Pulsed Load Modulation Transmitter With Multilevel Envelope Delta–Sigma Modulations," IEEE Trans. Microw. Theory Techn., vol. 64, no. 11, pp. 3643-3653, 2016.
[18] Y. Song, R. Zhu, and Y. E. Wang, "A X-band GaN power amplifier with Bitstream modulations and active noise filtering," in IMS 2015, 2015: IEEE, pp. 1-3.
[19] Y. Song, R. Zhu, and Y. E. Wang, "A pulsed load modulation (PLM) power amplifier with 3-level envelope delta-sigma modulation (EDSM)," PAWR 2015, 2015: IEEE, pp. 1-3.
[20] S. P. Mysore Nagaraja, R. U. Tok, R. Zhu, S. Bland, A. Propst, and Y. E. Wang, "Magnetic pendulum arrays for efficient wireless power transmission," 2019, vol. 1407: IOP Publishing, 1 ed., p. 012049.
[21] S. P. Mn et al., "Magnetic pendulum arrays for efficient ULF transmission," Scientific Reports, vol. 9, no. 1, p. 13220, 2019.
[22] Y. Liu, R. Zhu, and Q. Liu, "A Novel Low-Cost Frequency Diverse Array With Mirrored Two-Wave Mixing," IEEE Microwave and Wireless Technology Letters, vol. 33, no. 3, pp. 359-362, 2022.
[23] C. Liang, X. Hu, R. Zhu, L. Zhang, and Y. Wang, "Doppler Sidelobe Suppression via Quasi-Neural Network for ST-CDMA MIMO Radar," IEEE Sensors Journal, 2024.
[24] M. M. Biedka, R. Zhu, Q. M. Xu, and Y. E. Wang, "Ultra-wide band non-reciprocity through sequentially-switched delay lines," Scientific reports, vol. 7, no. 1, p. 40014, 2017.
[25] M. M. Biedka, R. Zhu, Q. M. Xu, and Y. E. Wang, "Ultra-wide band on-chip circulators for full-duplex communications," in IMS 2018, 2018: IEEE, pp. 987-990.
[26] M. M. Biedka, R. Zhu, Q. M. Xu, and Y. E. Wang, "Simultaneous transmission and receive (STAR) from DC to RF," in IMS 2017, 2017: IEEE, pp. 1774-1777.
入选国家级青年人才项目
2023年北京市科技新星